WAPS Templates
Table of Contents

1WAPS Templates

1Table of Contents

2Introduction

2Overview

2File Organization

3Page Processing

3Template Package

4Template Definition

4Template Creation

7Container Creation

7Template Upload

8Template Administration

9Template Management

9Content Objects

10Appendix A – Content Objects

Introduction

“Traditionally, professional web design companies have relied on static HTML web sites for a substantial portion of their revenue. However, with the emergence of economical portal applications, the consumer has quickly become savvy to the benefits offered by dynamic web sites. In order to cope with this new demand, web designers need to become acquainted with the opportunities presented by these new technological advancements. The skinning architecture in WAPS allows professional web designers to create stunning user interfaces which integrate seamlessly with the underlying portal application to produce a powerful, yet visually appealing customer web site.”

The term “Template” refers to a software architecture which provides you with a manageable way to separate application logic and content from its presentation. This abstraction of “form” and “function” is sometimes referred to as a two-tiered presentation model. The advantages of use of templates are that application logic and web page layout are separated and can be designed and modified independently. A software developer and a web page designer can collaborate without the risk of interfering with each others work.

"Templates" separate presentation and layout attributes from application logic. An intelligent skinning engine is used to assemble the artifacts into a final product. This two-tiered approach affords both developers and designers a fair degree of independence when it comes to maintaining a web site, and can substantially reduce the time and effort required in the post-release phases of a development project.

Developers must be well educated to keep the presentation details of layout and appearance abstracted from their script code. Both of these items can be mitigated through the use of technology and a solid architecture.

Overview

To make the process of creating templates as simple and flexible as possible to web designers we use pure HTML as the basis of the template definition. This allows designers to use their tool of choice for creating and maintaining templates. We defined some placeholders to separate the content objects from the static markup which designers can then include in their template. Placeholders are simply [TOKEN] text which uniquely identify a content object. To mitigate the performance impact of replacing these placeholders at runtime, we created a simple template upload mechanism which does the substitution of placeholders with the content objects to produce a user control file which can then be rendered by the engine. This pre-processing occurs only once when the template is uploaded.

In terms of layout, WAPS uses a free-form template approach which allows the template designer to organize the page in any layout they desire. For injection of content modules into the page, the designer can create an unlimited number of content panes which can be associated to the placement of modules in the database. The layout, name, and quantity of content panes would have to consistent in each skin.

File Organization

Templates can be applied at a host, portal, or tab level. Templates can also be applied at the module level; however, in this case we refer to them as Containers. All skin files are organized under the Portals folder. A special _default subfolder is used to designate the Host directory tree; whereas, each portal has its own directory tree named according to its ID in the database. This structure centralizes the “write-access” requirements to a single folder structure in your website. It also ties the physical organization of files with their logical usage within the application which means there is no external database required to manage the relationships.

[image: image1.png]& 3 Portals.

D _defauit
& D Containers.
D defauit
122 Container1
& D skins.
D defauit
[SEE
@0
& D Containers.
122 Container1
12 Container2
& D skins.
(=

& skin2

Templates and Containers can contain an unlimited number of subfolders – each subfolder representing a package of files necessary to render a skin. Subfolders are stored according to skin name. Using a name may increase the chance of naming collisions between skins but it also allows you to manage your files directly on the file system without worrying about reconciling the changes to an external data source.

Page Processing

WAPS uses a single ASPX page (Default.aspx) for rendering all controls and content. It centralizes all of the logic for management of the user interface in a single page. It reduces the number of entry points into the application which results in a far more secure solution. The Default.aspx has very limited logic – it includes code for managing the page <HEAD> elements and includes a placeholder for injecting the template.

When a user first enters the WAPS application, it examines the URL and request header it receives from the user's browser, to determine which template it should use. The template assignments are stored in a hierarchical manner so that child assignments are able to override parent assignments (ie. a template applied at the tab level should override a template applied at the portal level).

Once the template is identified, the associated user control is loaded dynamically and injected into the page placeholder.

Template Package

A template or container package is comprised of multiple files which constitute a complete template:

· *.htm, *.html files – abstract template definition files which will be processed by the template uploader to create an *.ascx file

· *.ascx files – template definition user controls which are precompiled in the format required by the template engine.

· *.css files – styles sheets related to template
· *.gif, *.jpg, *.jpeg, *.png – supporting graphics files

· *.* - any other resource files required for your skin (please note that the allowable file extensions are secured by the Host File Upload Extensions setting)

A template package can contain multiple template files. This allows you to create templates which leverage the same graphics but vary slightly based on layout. Obviously the more template files you have in a package, the more maintenance will be required when you wish to make a general change to the presentation in the future.

Template Definition

Template definitions can be created using two different methods, HTML or ASCX (user controls). The only difference between the two methods is the file extension of the template definition file and the use of tokens versus actual user control tags (defined in Appendix A).

At a minimum there will likely be two skin files for each package – one which defines the layout of the public portal and one which defines the layout of the private admin area. The public portal has the ability to host multiple content controls in varied pane layouts whereas the private admin area can only host admin controls in a single pane per page.

Template Creation

There is no particular order to this process, but the order below seems to work the best.

1. Choose an HTML or ASCX editor.

If you are comfortable with HTML tables and related HTML attributes, and can handle simple CSS settings, you can build a template. A WYSIWYG editor makes it particularly easy. You can use FrontPage, HotMetal, ColdFusion, DreamWeaver, VS.NET.

The HTML must be "well formed". All HTML container tags must be closed. For instance, if you have a <TABLE> tag, it must be closed with a corresponding </TABLE> close tag. All tag attributes must have no spaces around the = signs, and attribute values must be in double quotes (ie. <TABLE WIDTH=”200”>… </TABLE>). Generally a professional HTML editor handles all this for you, but preferences can often be set for other renderings; therefore, it is best to double check.

2. Design your template(s)

The free-form nature of the templates provides almost unlimited creative freedom with your design. The only restriction applies to content panes.

Content panes are the containers for the content modules which are automatically injected at runtime. Content panes are simply HTML tags with some custom attributes specified – specifically an ID and a RUNAT=”SERVER” attribute (ie. <TD ID=”ContentPane” RUNAT=”SERVER”>). Allowable content pane HTML tags include <TD>, <DIV>, , and <P>. At a bare minimum you must have at least one content pane and it must be appropriately named “ContentPane”. Content panes do not need to be contiguous – they can be located anywhere on the page. Content panes are collapsible as well – this means that if they contain no content at runtime, that they will be become invisible.

3. Manage graphics

Graphics are an integral part of template design. In order for the template engine to be able to locate your graphics files, you must specify the image references in a specific format. Place your graphics in the same folder as the template file. However, this is not a requirement as the template engine will recognize any subfolders you specify.

In order for WAPS to be able to locate your graphics files, the Template Uploader must add the relative path to your URL references when it parses the files in your template package. This explicit path specification results in the best possible performance for loading template graphics (since relative paths do not need to be determined at run-time for each request).

The Template Uploader will manage the relative paths for the following HTML tags (contained in either HTML or ASCX files): IMG SRC, TD BACKGROUND, SCRIPT SRC. It will also manage the relative paths for the following style sheet (CSS) tag: BACKGROUND-IMAGE:URL(). In order to support the output of the widest variety of HTML editors, the order of the tag attribute specification is not important to the Template Uploader.

4. Add content objects

Content objects are objects which will be rendered dynamically at runtime. If you are creating ASCX skins then you will need to specify the @Register and actual user control tag in your skin file (ie. <dnn:Login runat="server" id="dnnLogin" />). If you are creating HTML skins then you simply need to specify the token (ie. [LOGIN]). It is important to understand the functionality of each content object so that you can design the template accordingly.

Content objects support the concept of named instances. For example, if you want to have two menu controls in your template, you can specify [MENU:1] and [MENU:2] in your template file. In most cases you will only be using a single instance of a content object in your template and in this case it is fine to use a singleton instance specification (ie. [MENU]).

Content objects also contain a feature known as attributes. Attributes allow you to customize the appearance of the content object in your template. Each content object has its own set of supported attributes which are documented in Appendix B. If you are creating ASCX templates then you will need to specify the attribute directly in your template file (ie. <dnn:Login runat=”server” id=”dnnLogin” Text=”Signin” />). If you are creating HTML templates then you must include your attributes specifications in a separate file – this preserves the presentation of the HTML template file for the designer. A template package can contain a global attributes specification named “skin.xml” (or “container.xml” for containers) which applies to all template files in the package. In addition, you can also override the global template attribute specification with a template specific attribute specification by providing a “skinfilename.xml” file. The template uploader will merge the skin attributes with the HTML presentation file to create an ASCX skin file. The following XML fragment represents the structure of the attributes file:

<Objects>

<Object>

<Token>[LOGIN]</Token>

<Settings>

<Setting>

<Name>Text</Name>

<Value>Signin</Value>

</Setting>

</Settings>

</Object>

</Objects>

Please note there is a one to one correspondence of content object declarations in your template file (ie. [MENU]) with the attribute specification in the XML file. This is also true for named instances. For example if you want to include a vertical and horizontal menu in your template, you can specify [MENU:1] and [MENU:2] named instances in your template file and then create definitions for each with different attributes in your XML file.

5. Create a style sheet

WAPS uses an external style sheet (or CSS) specification which takes full advantage of their cascading nature. Essentially this means that WAPS has multiple external style sheet references on a page – each style sheet reference is specified in prioritized order so that hierarchical overriding can occur. The cascading order of style sheets is summarized below (with each item overriding the previous items):

1. Modules – styles for custom modules defined in PortalModuleControl.StyleSheet

2. Default – default host level styles – default.css

3. Skin – skin styles – skin.css or skinfilename.css

4. Container – container styles – container.css or containerfilename.css

5. Portal – custom styles defined by portal Administrator – portal.css

A template package can contain a global style sheet named “skin.css” (or “container.css” for containers) which applies to all template files in the package. In addition, you can also override the global template style sheet with a template specific style sheet by providing a “skinfilename.css” file. The default WAPS style sheet (/Portals/_default/default.css) contains a number of default CSS "classes" (the entries that start with a period) that the portal relies on for a consistent user interface experience. You are free to add your own styles but at a bare minimum you should override the default styles to match your skin design.

6. Create screen shots

The Skin management interface for WAPS will display thumbnails of the skins or containers you have installed. For each template or container file (*.ascx) you should create a full-size, high quality screen shot file in JPEG image format. File naming conventions are very important here and are consistent with the XML and CSS details described above. If you have a skin file named “skinfilename.ascx” then you must create your screen shot as “skinfilename.jpg”. The management module will create the thumbnail for you.
7. Package the template
All of the files associated to a template are packaged as a compressed *.zip file. If you use Windows XP, or have "Compressed Folders" installed in Windows ME, you can just right-click on the folder where you saved everything, choose "Send to >", and click "Compressed (zipped) folder." The operating system will ZIP it up for you, ready for upload. If you don't have one of these operating systems, use WinZIP or some other ZIP utility. The naming of your template package file is important as the filename of the ZIP file will be used as the skin name when it is installed in your WAPS application. To prevent naming collisions with other templates, it is generally best to name your template as CompanyName.TemplateName.

In many circumstances, you will likely design Containers which complement the presentation of your Template. In these cases, you will want a method for relating a template package to a container package. To achieve this, you should name your template package consistently with your container package (ie. template = wadin.WAPS.zip and container = wadmin.WAPS.zip). To simplify the packaging and deployment of template /container combinations, you can create a single ZIP file as long as you follow a strict file naming guidelines – the template package must be named “skins.zip” and the container package must be named “containers.zip”. A single file ZIP will use the filename of the parent ZIP file for the name of the both the template and container when deployed

Container Creation

Containers are template definitions which can be applied to content modules. A container is defined in exactly the same manner as a page template except for the fact that there are a different set of content objects used in containers.

The only extra restriction when creating containers is that an Actions control must be included in the container template. The Actions control is a feature in WAPS which acts as the glue that ties the content module functionality to the portal framework. The Actions control is essentially a user interface control which exposes the content module functionality. General functions include the ability to edit module settings as well as the ability to manage the positioning of modules within template content panes. Custom functions related to a specific module are also exposed, allowing you to edit content and navigate to other controls. There are a number of Actions controls included with WAPS. The default actions control is the SolPartActions control which behaves as a popup menu when you hover over the edit icon in the upper left corner of the default container template. Since this action control is best suited for higher level browsers, there is also a DropDownActions control which behaves like a simple dropdown combobox for downlevel browsers.

Although page templates and containers are created, packaged, and deployed independently, it is very likely that you will create a template and container combination which are intended to work together. Of course this can be accomplished by uploading both the template and the container and then applying them to your portal user interface. To simply this operation and provide a higher degree of granularity, a concept known as Pane Level of the template is also available. Pane level of the template can only be configured at design-time when the template designer constructs the template. It involves the use of some custom attributes which can be included in the markup for the pane HTML tag (ie. <td id="LeftPane" runat="server" valign="top" class="LeftPane" align="center" width="200" ContainerType="L" ContainerName="DNN" ContainerSrc="standard.ascx">). The ContainerType, ContainerName, and ContainerSrc can be used to identify a specific container to be used with all modules injected into the pane. In order for this to work correctly, the container must exist in the location specified otherwise the default container will be displayed.

Template Upload

Since templates are based on ASCX files which are essentially executable once they are added to an ASPX page, there is some risk that malicious script could be inserted into the skin files – putting your entire installation in danger. For this reason, the Host has the ability to grant Template Upload Permission to either the Host or Portal. The option is available when you login as the Host User and select the Host Settings option from the Host page. If the option is set to Host then only the Host User is able to upload templates to the site. If the option is set to Portal (default), then the Administrator of the portal is able to upload their own templates without Host intervention.

[image: image2.png]‘Skin Upload Permission: O Host @ portal

Update

Upload of files are centralized in WAPS to the File Manager page on the Admin or Host menu. To upload templates to a specific portal, you must browse to the portal’s URL, login, and then use the File Manager option in the Admin page. To upload templates which are available to all portals, the Host should use the File Manager option in the Host page. The File Manager has an option to Upload New File(s). Selecting this option displays the File Upload interface which allows you to upload your templates and container packages. Select the appropriate option from the upload file type options prior to uploading a package (the application must be able to distinguish between the various ZIP file packages). Please note that depending on the Template Upload Permission defined above, some of the options may not be available to you.

[image: image3.png]@ File Manager - Edit

O content Fies @ skin Package O Container Package O Private Assembly

[|(Browse..) 26

Remove Upload Fie(s) Cancel

The Template Upload will unzip the skin package; creating the necessary folder and decompress the files. It will convert any HTML files to their ASCX user control equivalent by replacing the placeholder tokens with the actual ASP.NET script. This replacement is done according to the content objects defined in WAPS. ASCX user control files and CSS style sheet files will also be parsed to include the relative path references for graphics files.

Template Administration

Templates can be applied to your application at a variety of levels. A generic template selection control is used to expose the available templates in various areas of the portal user interface. Each portal has access to their own templates as well as templates uploaded by the host. Templates are assigned in a hierarchical manner where child templates will override parent templates assignments. For example, a skin applied at the page level will always override a template assigned at the portal level.

[image: image4.png]Site Settings

Title: [Dothetiuke
Logo: [logo.of

Portal Skin: [<Not Spectied>
Portal Container: [<Not Spectied>
Admin Skin: [<Not Spectied>

‘Admin Container: [<Not Specfied>

Host Level

Host level templates apply to all portals in your site. They can be assigned by logging in as the Host User and selecting the Host->Host Settings page. You are able to assign a template and/or container for both the public portal and private admin interfaces.

Portal Level

Portal level template apply to a specific portal. They can be assigned by logging in as the Administrator for a portal and selecting the Admin->Site Settings page. You are able to assign a template and/or container for both the public portal and private admin interfaces.

Page Level

Page level templates apply to a specific page in a portal. They can be assigned by logging in as the Administrator for a portal and selecting the Edit Page Settings option from the page admin control. You are able to assign a template and/or container for a page.

Pane Level

Pane level templates are actually module containers which apply to a specific pane on a portal page. They must be configured by the template designer when creating the template and cannot be managed through the portal user interface. Module level templates assigned to a specific module will override the Pane level templates.

Module Level
Module level templates are referred to as containers and apply to a specific content module instance on a page. The can be assigned by logging in as the Administrator for the portal and selecting the Edit Module Settings option on the module Actions menu.

Template Management

In addition to the administration options in the Site Settings, Pages, and Modules there is also a template management module which allows you to view thumbnails of installed templates, preview or apply them to your site, parse them if you have made manual changes to the source HTML files, or delete them.
Content Objects

Content Objects are active elements which can be included in the static HTML markup of your template file to produce a dynamic user interface. There are a number of default content objects included with WAPS (outlined in Appendix A) for common portal functions such as login, status, and navigation.

Custom Content objects are packaged and installed using the same process as Custom Modules (Private Assemblies). All of the necessary content object resource files are combined with a WAPS manifest file (* .dnn) and packaged into a compressed ZIP file.

The following *.dnn manifest file defines the package:

<?xml version="1.0" encoding="utf-8" ?>

<wasp version="2.0" type="SkinObject">

 <folders>

 <folder>

 <name>CompanyName - PageTitle</name>

 <modules>

 <module>

 <controls>

 <control>

 <key>PAGETITLE</key>

 <src>PageTitle.ascx</src>

 <type>SkinObject</type>

 </control>

 </controls>

 </module>

 </modules>

 <files>

 <file>

 <name>PageTitle.ascx</name>

 </file>

 <file>

 <name>YourCompanyName.PageTitle.dll</name>

 </file>

 </files>

 </folder>

 </folders>

</waps>
Appendix A – Content Objects

The following tables contain the default content objects which can be used in your templates.

	Token
	Control
	Description

	[SOLPARTMENU]
	<dnn:SolPartMenu runat="server" id="dnnSolPartMenu">
	Displays the hierarchical navigation menu (formerly [MENU])

	[LOGIN]
	<dnn:Login runat="server" id="dnnLogin">
	Dual state control – displays “Login” for anonymous users and “Logout” for authenticated users.

	[BANNER]
	<dnn:Banner runat="server" id="dnnBanner">
	Displays a random banner ad

	[BREADCRUMB]
	<dnn:Breadcrumb runat="server" id="dnnBreadcrumb">
	Displays the path to the currently selected tab in the form of TabName1 > TabName2 > TabName3

	[COPYRIGHT]
	<dnn:Copyright runat="server" id="dnnCopyright">
	Displays the copyright notice for the portal

	[CURRENTDATE]
	<dnn:CurrentDate runat="server" id="dnnCurrentDate">
	Displays the current date

	[HELP]
	<dnn:Help runat="server" id="dnnHelp">
	Displays a link for Help which will launch the users email client and send mail to the portal Administrator

	[HOSTNAME]
	<dnn:HostName runat="server" id="dnnHostName">
	Displays the Host Title linked to the Host URL

	[LINKS]
	<dnn:Links runat="server" id="dnnLinks">
	Displays a flat menu of links related to the current tab level and parent node. This is useful for search engine spiders and robots

	[LOGO]
	<dnn:Logo runat="server" id="dnnLogo">
	Displays the portal logo

	[PRIVACY]
	<dnn:Privacy runat="server" id="dnnPrivacy">
	Displays a link to the Privacy Information for the portal

	[SIGNIN]
	<dnn:Signin runat="server" id="dnnSignin">
	Displays the signin control for providing your username and password.

	[TERMS]
	<dnn:Terms runat="server" id="dnnTerms">
	Displays a link to the Terms and Conditions for the portal

	[USER]
	<dnn:User runat="server" id="dnnUser">
	Dual state control – displays a “Register” link for anonymous users or the users name for authenticated users.

Template Attributes (used in Skin.xml)

	Token
	Attribute
	Default
	Description

	[SOLPARTMENU]
	separatecss
	true
	Use CSS defined in a style sheet (values: true, false)

	
	backcolor
	#333333
	Background color

	
	forecolor
	white
	Fore color of menu item when selected

	
	highlightcolor
	white
	Color of top and left border to give a highlight effect

	
	iconbackgroundcolor
	#333333
	Background color in area where icon is displayed

	
	selectedbordercolor
	
	Color of border surrounding selected menu item

	
	selectedcolor
	#CCCCCC
	Background color of menu item when selected

	
	selectedforecolor
	white
	Fore color of menu item when selected

	
	display
	horizontal
	Determines how the menu is displayed, horizontal or vertical (values: vertical, horizontal)

	
	menubarheight
	16
	Menu bar height in pixels

	
	menuborderwidth
	1
	Menu border width in pixels

	
	menuitemheight
	21
	Menu item height in pixels

	
	forcedownlevel
	false
	Flag to force the downlevel menu to display (values: true, false)

	
	moveable
	false
	Flag to detemine if menu can be moved (values: true, false)

	
	iconwidth
	0
	Width of icon column in pixels

	
	menueffectsshadowcolor
	dimgray
	Color of the shadow

	
	menueffectsmouseouthidedelay
	500
	Number of milliseconds to wait until menu is hidden on mouse out. (0 = disable)

	
	mouseouthidedelay
	1
	Number of milliseconds to wait until menu is hidden on mouse out. (0 = disable)

	
	menueffectsmouseoverdisplay
	Highlight
	Adjusts effect when mouse moves over menu bar item (Values: Outset, Highlight, None)

	
	menueffectsmouseoverexpand
	true
	Makes menu expand on mouse over (unlike any menu found within the Windows environment) (Values: true, false)

	
	menueffectsstyle
	filter:progid:DXImageTransform.Microsoft.Shadow(color='DimGray', Direction=135, Strength=3) ;
	IE only property for SubMenu styles and transitions

	
	fontnames
	Arial
	

	
	fontsize
	12
	

	
	fontbold
	false
	

	
	menueffectsshadowstrength
	3
	Determines how many pixels the shadow extends

	
	menueffectsmenutransition
	None
	Determines which direction the shadow will fall (Values: None, AlphaFade, AlphaFadeBottomRight, Barn, Blinds, Checkerboard, ConstantWave, Fade, GradientWipe, Inset, Iris, RadialWipe, Random, RandomBars, Slide, Spiral, Stretch, Strips, Wave, Wheel, Zigzag)

	
	menueffectsmenutransitionlength
	0.3
	Number of seconds the transition will take

	
	menueffectsshadowdirection
	Lower Right
	Determines which direction the shadow will fall (Values: None, Top, Upper Right, Right, Lower Right, Bottom, Lower Left, Left, Upper Left)

	
	menucontainercssclass
	MainMenu_MenuContainer
	Menu Container CSS Class

	
	menubarcssclass
	MainMenu_MenuBar
	Menu Bar CSS Class

	
	menuitemcssclass
	MainMenu_MenuItem
	Menu Item CSS Class

	
	menuiconcssclass
	MainMenu_MenuIcon
	Menu Icon CSS Class

	
	menuitemselcssclass
	MainMenu_MenuItemSel
	Menu Item CSS Class for mouse-over

	
	menubreakcssclass
	MainMenu_MenuBreak
	Menu Break CSS Class

	
	submenucssclass
	MainMenu_SubMenu
	SubMenu CSS Class

	
	menuarrowcssclass
	MainMenu_MenuArrow
	Menu Arrow CSS Class

	
	menurootarrowcssclass
	MainMenu_MenuRootArrow
	Menu Root Arrow CSS Class

	
	forcefullmenulist
	false
	Displays the full menu as an indented list of normal hyperlinks (like a sitemap) {true|false}

	
	useskinpatharrowimages
	false
	Use arrow images located in the skin and not those in the /images folder {true|false}

	
	userootbreadcrumbarrow
	true
	Use a breadcrumb arrow to identify the root tab that is listed in the breadcrumb array list {true|false}

	
	usesubmenubreadcrumbarrow
	false
	Use a breadcrumb arrow to identify the submenu tabs that are listed in the breadcrumb array list {true|false}

	
	rootbreadcrumbarrow
	
	image used for root level menu breadcrumb arrows – i.e file.gif

	
	submenubreadcrumbarrow
	
	image used for submenu menu breadcrumb arrows – i.e file.gif

	
	usearrows
	
	use arrows to indicate child submenus

	
	downarrow
	menu_down.gif
	arrow image used for downward facing arrows indicating child submenus

	
	rightarrow
	breadcrumb.gif
	arrow image used for right facing arrows indicating child submenus

	
	level
	Root
	Root level of the menu in relationship to the current active tab {Root|Same|Child}

	
	rootonly
	false
	indicator to turn off submenus {true|false}

	
	rootmenuitembreadcrumbcssclass
	
	CSS Class used for root menu items when they are found in the breadcrumb array list

	
	submenuitembreadcrumbcssclass
	
	CSS Class used for sub menu items when they are found in the breadcrumb array list

	
	rootmenuitemcssclass
	
	CSS Class used for root menu items

	
	rootmenuitemactivecssclass
	
	CSS Class used for root menu items when they are the active tab

	
	submenuitemactivecssclass
	
	CSS Class used for sub menu items when they are the active tab

	
	rootmenuitemselectedcssclass
	
	CSS Class used for root menu items when they moused-over

	
	submenuitemselectedcssclass
	
	CSS Class used for sub menu items when they moused-over

	
	separator
	
	The separator between Root level menu items. This can include custom skin images, text, and HTML (ie. <![CDATA[]]>)

	
	separatorcssclass
	
	CSS class used for the root level menu item separator

	
	rootmenuitemlefthtml
	
	HTML text added to the beginning of the Root menu items

	
	rootmenuitemrighthtml
	
	HTML text added to the end of the Root menu items

	
	submenuitemlefthtml
	
	HTML text added to the beginning of the sub menu items

	
	submenuitemrighthtml
	
	HTML text added to the end of the sub menu items

	
	tooltip
	
	Tooltips added to the menu items. These come from the tab object properties which are filled from the tabs table {Name|Title|Description}

	
	leftseparator
	
	The separator used just before a root level menu item. A use for this might be a left edge of a tab image for example

	
	rightseparator
	
	The separator used just after a root level menu item. A use for this might be a right edge of a tab image for example

	
	leftseparatoractive
	
	The separator used just before an active root level menu item

	
	rightseparatoractive
	
	The separator used just before an active root level menu item

	
	leftseparatorbreadcrumb
	
	The separator used just before a root level menu item found in the breadcrumb array list

	
	rightseparatorbreadcrumb
	
	The separator used just before a root level menu item found in the breadcrumb array list

	
	leftseparatorcssclass
	
	CSS class used for leftseparator

	
	rightseparatorcssclass
	
	CSS class used for leftseparator

	
	leftseparatoractivecssclass
	
	CSS class used for leftseparatoractive

	
	rightseparatoractivecssclass
	
	CSS class used for rightseparatoractive

	
	leftseparatorbreadcrumbcssclass
	
	CSS class used for leftseparatorbreadcrumb

	
	rightseparatorbreadcrumbcssclass
	
	CSS class used for rightseparatorbreadcrumb

	
	menualignment
	Left
	Alignment of the menu within the menu bar. {Left|Center|Right|Justify}

	
	cleardefaults
	false
	If true, this value will clear/empty the default color settings of the menu so that they can be left empty and not just overridden with another value

	[LOGIN]
	Text
	Login
	The text of the login link

	
	CssClass
	OtherTabs
	The style of the login link

	
	LogoffText
	Logoff
	The text for the logoff link

	[BANNER]
	BorderWidth
	0
	The border width around the banner

	[BREADCRUMB]
	Separator
	breadcrumb.gif
	The separator between breadcrumb links. This can include custom skin images, text, and HTML (ie. <![CDATA[]]>)

	
	CssClass
	SelectedTab
	The style name of the breadcrumb links

	
	RootLevel
	1
	The root level of the breadcrumb links. Valid values include:
-1 - show word “Root” and then all breadcrumb tabs
0 - show all breadcrumb tabs

n (where n is an integer greater than 0) - skip n breadcrumb tabs before displaying

	[COPYRIGHT]
	CssClass
	SelectedTab
	The style name of portal copyright link

	[CURRENTDATE]
	CssClass
	SelectedTab
	The style name of date text

	
	DateFormat
	MMMM dd, yyyy
	The format of the date text

	[HELP]
	CssClass
	OtherTabs
	The style name of help link

	[HOSTNAME]
	CssClass
	OtherTabs
	The style name of Host link (Powered By xxxxxxxxx)

	[LINKS]
	CssClass
	CommandButton
	The style name of the links

	
	Separator
	
	The separator between links. This can include custom skin images, text, and HTML. (ie. <![CDATA[]]>)

	
	Alignment
	Horizontal
	The links menu style (“Horizontal” or “Vertical”)

	[LOGO]
	BorderWidth
	0
	The border width around the logo

	[PRIVACY]
	Text
	Privacy Statement
	The text of the privacy link

	
	CssClass
	OtherTabs
	The style name of privacy link

	[SIGNIN]
	
	
	

	[TERMS]
	Text
	Terms of User
	The text of the terms link

	
	CssClass
	OtherTabs
	The style name of terms link

	[USER]
	Text
	Register
	The text of the register/user link

	
	CssClass
	OtherTabs
	The style name of register/user link

Container Objects
	Token
	Control
	Description

	[SOLPARTACTIONS]
	<dnn:SolPartActions runat="server" id="dnnSolPartActions">
	Popup module actions menu (formerly [ACTIONS])

	[DROPDOWNACTIONS]
	<dnn:DropDownActions runat="server" id="dnnDropDownActions">
	Simple dropdown combobox for module actions

	[LINKACTIONS]
	<dnn:LinkActions runat="server" id="dnnLinkActions">
	Links list of module actions

	[ICON]
	<dnn:Icon runat="server" id="dnnIcon">
	Displays the icon related to the module

	[TITLE]
	<dnn:Title runat="server" id="dnnTitle">
	Displays the title of the module

	[VISIBILITY]
	<dnn:Visibility runat="server" id="dnnVisibility">
	Displays an icon representing the minimized or maximized state of a module.

	[PRINTMODULE]
	<dnn:PrintModule runat="server" id="dnn PrintModule ">
	Displays a new window with only the module content displayed.

Container Attributes (used in Container.xml)

	Token
	Attribute
	Default
	Description

	[SOLPARTACTIONS]
	
	
	

	[DROPDOWNACTIONS]
	
	
	

	[LINKACTIONS]
	
	
	

	[ICON]
	BorderWidth
	0
	The border width around the icon

	[TITLE]
	CssClass
	Head
	The style name of title

	[VISIBILITY]
	BorderWidth
	0
	The border width around the icon

	
	MinIcon
	min.gif
	The custom min icon file located in the skin file

	
	MaxIcon
	max.gif
	The custom max icon file located in the skin file

	[PRINTMODULE]
	PrintIcon
	print.gif
	The custom print icon file located in the skin file

PAGE
1

